Reed, Bruce A. (1992), «Finding approximate separators and computing tree width quickly», Proc. 24th Annual ACM Symposium on Theory of computing, ISBN978-0897915113, pp. 221–228, doi:10.1145/129712.129734.
MR95.
Molloy, Michael; Reed, Bruce (1995), «A critical point for random graphs with a given degree sequence», Random Structures & Algorithms, 6 (2–3): 161–179, MR1370952, doi:10.1002/rsa.3240060204.
R97.
Reed, B. A. (1997), «Tree width and tangles: a new connectivity measure and some applications», Surveys in combinatorics, 1997 (London), ISBN9780511662119, London Math. Soc. Lecture Note Ser., 241, Cambridge: Cambridge Univ. Press, pp. 87–162, MR1477746, doi:10.1017/CBO9780511662119.006.
Molloy, Michael; Reed, Bruce (1998), «Further algorithmic aspects of the local lemma», Proc. 30th Annual ACM Symposium on Theory of computing, ISBN978-0897919623, pp. 524–529, doi:10.1145/276698.276866, hdl:1807/9484.
RS02.
Reed, Bruce; Sudakov, Benny (2002), «List colouring of graphs with at most (2 − o(1))χ vertices», Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), Higher Ed. Press, Beijing, pp. 587–603, Bibcode:2003math......4467R, MR1957563, arXiv:math/0304467.
Molloy, Michael; Reed, Bruce (2002), Graph Colouring and the Probabilistic Method, ISBN978-3-540-42139-9, Algorithms and Combinatorics, 23, Berlin: Springer-Verlag, MR1869439.